Approximation power of Quantum Boltzmann Machine

Data reported in "Approximating power of machine-learning ansatz for quantum many-body states", https://arxiv.org/abs/1901.08615 are presented. This preprint has been accepted for publication by Physical Review B.

    Organizational unit
    Quantum Boltzmann Machine
    Type
    Dataset
    DOI
    10.26037/yareta:pen5stdvz5bp3fgjhyyf3l2jiq
    Type
    general.label.dataset
    License
    Creative Commons Public Domain Dedication
Publication date20/04/2020
Retention date02/05/2030
accessLevelPublicAccess levelPublic
SensitivityUndefined
duaNoneContract on the use of data
Contributors
  • Abanin, Dmitry
20
3
  • Quality (0 Reviews)
  • Usefulness (0 Reviews)

Datacite metadata

Packages information

Similar archives

Quantum Boltzmann Machine
Scaling of temporal entanglement in proximity to integrability
2021 accessLevelPublic Public 627.1 KB
Quantum Boltzmann Machine
Influence functional of many-body systems: temporal entanglement and matrix-product state representation
2021 accessLevelPublic Public 174.2 KB
Quantum Boltzmann Machine
Disorder and influence matrix
2022 accessLevelPublic Public 2.1 MB
Quantum Boltzmann Machine
Influence matrix approach to Floquet dynamics
2021 accessLevelPublic Public 26.0 MB
All rights reserved by DLCM and the University of GenevaunigeBlack