PIROCK: A swiss-knife integrator for stiff diffusion-advection-reaction-noise problems

This code is described in: A. Abdulle and G. Vilmart, PIROCK: a swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise, J. Comp. Phys. 242 (2013), 869-888. http://dx.doi.org/10.1016/j.jcp.2013.02.009 This code is a modification of the code ROCK2 (A. Abdulle, 2002), A. Abdulle & A.A. Medovikov, Second order Chebyshev methods based on orthogonal polynomials, Numer. Math. 90, no. 1 (2001), 1-18. http://dx.doi.org/10.1007/s002110100292 Content: - Fortran code pirock.f and driver examples, - Fortran random number generator zufall.f (by W. P. Petersen ETH Zurich 1994) (other random number generators could be used). Version: October 8, 2012.

    Organizational unit
    Vilmart Group - Math
    Type
    Dataset
    DOI
    License
    MIT License
    Keywords
    ROCK method, Stabilized second-order integration method, Partitioned Runge–Kutta methods, Stiff problems, Advection–diffusion–reaction problems, Stochastic differential equations
Publication date30/01/2023
Retention date27/01/2033
accessLevelPublicAccess levelPublic
SensitivityBlue
licenseContract on the use of data
License
Contributors
  • Abdulle, Assyr
  • Vilmart, Gilles orcid
74
8
  • Quality (0 Reviews)
  • Usefulness (0 Reviews)

Datacite metadata

Packages information

Similar archives

Vilmart Group - Math
A uniformly accurate scheme for the numerical integration of penalized Langevin dynamics
2023 accessLevelPublic Public 11.1 MB
Vilmart Group - Math
SK-ROCK: Optimal explicit stabilized integrator of weak order one for stiff and ergodic Itô stochastic differential equations
2023 accessLevelPublic Public 23.0 KB
Vilmart Group - Math
DMV10: preprocessed discrete Moser-Veselov algorithm for the full dynamics of a rigid body
2023 accessLevelPublic Public 14.5 KB
Vilmart Group - Math
SROCK2: weak second order explicit stabilized integrators for stiff Itô stochastic differential equations
2023 accessLevelPublic Public 80.1 KB
All rights reserved by DLCM and the University of GenevaunigeBlack