SROCK2: weak second order explicit stabilized integrators for stiff Itô stochastic differential equations

This code is described in: A. Abdulle, G. Vilmart, and K.C. Zygalakis, Weak second order explicit stabilized methods for stiff stochastic differential equations, SIAM J. Sci. Comput. 35 (2013):1792-1814. http://dx.doi.org/10.1137/12088954X This code is a modification of the code ROCK2 (A. Abdulle, 2002), A. Abdulle & A.A. Medovikov, Second order Chebyshev methods based on orthogonal polynomials, Numer. Math. 90, no. 1 (2001), 1-18. http://dx.doi.org/10.1007/s002110100292 Content: - Fortran code srock2.f and driver examples, - Fortran random number generator zufall.f (by W. P. Petersen ETH Zurich 1994) (other random number generators could be used). Version: December 12, 2012.

    Organizational unit
    Vilmart Group - Math
    Type
    Dataset
    DOI
    10.26037/yareta:wjnq4xo55fedhk2zyouzbyoblu
    License
    MIT License
    Keywords
    Stiff SDEs, Explicit stochastic methods, Stabilized methods, Orthogonal Runge-Kutta-Chebyshev, S-ROCK
Publication date31/01/2023
Retention date28/01/2033
accessLevelPublicAccess levelPublic
SensitivityBlue
duaNoneContract on the use of data
Contributors
  • Abdulle, Assyr
  • Vilmart, Gilles orcid
  • Zygalakis, Konstantinos C.
16
1
  • Quality (0 Reviews)
  • Usefulness (0 Reviews)

Datacite metadata

Packages information

Similar archives

Vilmart Group - Math
A uniformly accurate scheme for the numerical integration of penalized Langevin dynamics
2023 accessLevelPublic Public 11.1 MB
Vilmart Group - Math
Multirevolution integrators for SDEs with fast stochastic oscillations and the nonlinear Schrödinger equation with fast white noise dispersion
2023 accessLevelPublic Public 4.3 MB
Vilmart Group - Math
High order integrators for sampling the invariant measure of constrained overdamped Langevin dynamics
2023 accessLevelPublic Public 73.8 MB
Vilmart Group - Math
PIROCK: A swiss-knife integrator for stiff diffusion-advection-reaction-noise problems
2023 accessLevelPublic Public 99.0 KB
All rights reserved by DLCM and the University of GenevaunigeBlack